The topological vertex, developed by Aganagic, Klemm, Marino and Vafa, provides an explicit algorithm to compute the open Gromov-Witten invariants of smooth toric Calabi-Yau threefolds in mathematics, as well as the A-model topological string amplitudes in physics. In this talk, I will introduce our recent work about the connection between the topological vertex and multi-component KP hierarchy. This talk is based on a joint work with Zhiyuan Wang and Jian Zhou.
报告人简介:杨成浪,现为中科院数学所博士后,本科毕业于北京理工大学,博士毕业于北京大学,师从刘小博教授。杨成浪博士主要研究方向为数学物理,包括Gromov-Witten不变量,可积系统以及Schur Q-多项式等;已在Adv. Math,Lett. Math. Phys.等杂志发表多篇论文。