Home

Rigidity of Einstein four-manifolds with positive sectional curvature
2018-09-07 00:00:00

Einstein metrics are most natural Riemannian metrics on differentiable manifolds. In dimensions 2 and 3, they must have constant sectional curvature, while in dimension 4, they are much more complicated. For the complex setting, in 1990 Tian classified Kahler-Einstein four-manifolds with positive scalar curvature, and in 2012 LeBrun classified Hermitian, Einstein four-manifolds with positive scalar curvature. For the real setting, however less is known, even assuming a (strong) condition of positive sectional curvature. In this talk I will first talk about some background on Einstein manifolds, then I will talk about my recent attempts of attacking this problem via k-positive curvature operator, precisely, I proved that Einstein four-manifolds of three-positive curvature operator are isometric to either $S^4$ or $CP^2$.