报告摘要:
| We consider $sigma_k$-curvature equation with $H_k$-curvature condition on a compact manifold with boundary $(X^{n+1}, M^n, g)$. When restricting to the closure of the positive $k$-cone, this is a fully nonlinear elliptic equation with a fully nonlinear Robin-type boundary condition. We prove a general bifurcation theorem in order to study nonuniqueness of solutions when $2k
|