报告摘要:
| We compare finite rank perturbations of the following three ensembles of complex rectangular random matrices: First, a generalised Wishart ensemble with one random and two fixed correlation matrices introduced by Borodin and Peche, second, the product of two independent random matrices where one has correlated entries, and third, the case when the two random matrices become also coupled through a fixed matrix. The singular value statistics of all three ensembles is shown to be determinantal and we derive double contour integral representations for their respective kernels. Three different kernels are found in the limit of infinite matrix dimension at the origin of the spectrum, which depend on finite rank perturbations of the correlation and coupling matrices. This is based on joint work with G. Akemann, T. Checinski and E. Strahov
|